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Automatic Registration of Multisensor Images
Using an Integrated Spatial and Mutual
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Jiayong Liang, Xiaoping Liu, Kangning Huang, Xia Li, Dagang Wang, and Xianwei Wang

Abstract—A new image-registration method is presented by
integrating the area-based and feature-based methods. The in-
tegrated method is characterized by a novel similarity metric
based on spatial and mutual information (SMI), the ant colony
optimization for continuous domain (ACOR), and a two-phase
searching strategy. The SMI-based metric takes into account both
spatial relations of detected features [spatial information (SI)] and
the mutual information (MI) between the reference and sensed
images. The spatial relation is to derive a fast transformation of
the near global optimum without specifying the initial searching
range. The MI is to obtain an optimal transformation with high
accuracy. ACOR is adopted to optimize SMI for the first time
in this paper, as the function of SMI is generally non-convex and
irregular. In addition, a two-phase searching strategy is designed
to improve the performance of ACOR. Phase-1 only considers the
SI and finds some low-accurate solutions. Phase-2 considers both
SI and MI so it is to search for a more accurate solution. These
two phases are switched according to the diversity of the solu-
tions. The proposed integrated method has been tested using the
remote-sensing images acquired from different sensors, including
TM, SPOT, and SAR. The experimental results indicate that the
SMI-based metric is more robust than the conventional metrics
which consider SI or MI alone. This method is able to achieve a
highly accurate automatic registration of multisensor images.

Index Terms—Ant colony optimization (ACO), image registra-
tion, mutual information (MI), remote sensing.

I. INTRODUCTION

IMAGE registration can be described as a process of ge-
ometrically aligning two images, the reference image and

the sensed image. The registration of remote-sensing images,
particularly the multisensor images, is a key component in
various applications, such as image mosaicking, image fusion,
environmental monitoring, and change detection [1]–[4]. Most
of the applications above require high efficiency and accuracy.
For instance, a registration accuracy of less than one-fifth of
a pixel is required for acquiring a change detection error of
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less than 10% [5]. However, it is challenging for most of the
existing methods to satisfy this registration accuracy. On one
hand, the traditional image-registration techniques that require
manually selected control points (CPs) is very labor intensive
and time consuming [6], [7]. On the other hand, the traditional
automatic registration algorithms are relatively inefficient, in-
accurate, and unstable in the multisensor image registration [8],
[9]. It is therefore useful to develop the method to improve
efficiency, accuracy and robustness of automatic registration for
multisensor images.

There are two major types of automatic registration methods
for remote-sensing images: 1) feature-based registration, and 2)
area-based registration [1]. The former estimates transforma-
tion by matching features extracted from the images, while the
latter implements the estimation by using the original intensity
information directly.

The feature-based methods are usually utilized when ade-
quate detectable features, appropriate feature extraction, and
the matching methods are available. These methods estimate
the transformation by matching different kinds of features, in-
cluding point [8], line [10], and region [11], which are extracted
by various feature detection methods, such as Harris corner de-
tector [12], Canny detector [13], image segmentation methods,
and phase congruency model [14]. The extracted features are
then matched using spatial relations [15], invariant descriptors
[16], or relaxation methods [17]. After calculating the value of
these feature descriptors for the reference and sensed image,
the difference of the value is considered as the distance of the
two sets of features. A minimum distance rule with threshold is
generally applied [1], [10], [11], [16]. Even without the initial
searching range, it is fairly easy for the feature-based methods
to find the near-optimal transformation when sufficient distinc-
tive objects are detected [1]. Feature-based methods are capable
of registering the images with complex distortions as well as
those with distinctive features, such as map and photograph.
However, in multisensor remote-sensing image registration, it
is difficult for feature detectors to take all the differences of
imaging conditions and spectral sensitivity into account [1],
which often results in feature mismatching and low registration
accuracy.

Usually, the area-based methods are applied when prominent
details in the reference and sensed image are not sufficient.
With these methods, the entire or subsets of the images are
used to estimate the intensity correspondence between them.
The correspondence is measured by different kinds of similarity
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metrics, such as cross correlation [18], phase correlation [19],
and mutual information (MI)[20]. However, the area-based
methods often give rise to a heavy computational load, be-
cause the statistical dependence between the intensities of the
images in these methods is computational expensive [1], [21].
Moreover, remote-sensing images, which are usually influenced
by noise and distortions, are much larger and more complex
than general images [8], [22], [23]. Though its use is limited
by the extremely heavy computational load and complicated
measurement model, the competitive superiority of area-based
method is still obvious when it comes to multisensor images.
Recent studies [21], [24] have proved that MI-based method can
robustly register multisensor images with sub-pixel accuracy.
Despite its outstanding performance, the MI-based method
provides a local maximum rather than a global maximum of
the entire search space for the correct transformation [21], [22].
As a result, a particular region of the search space should
be predefined when the MI-based registration is implemented,
which inevitably reduces its robustness.

In this paper, we present an integrated method (integration
of area-based and feature-based methods) to overcome the
respective weaknesses of registration accuracy and computa-
tional load. The integration is carried out by proposing a novel
similarity metric based on the integrated spatial and MI (SMI).
This metric consists of two components, the spatial relations
of extracted features [spatial information (SI)] and the MI of
image intensity. The component of SI is used to derive a fast
transformation of the near global optimum without specifying
the initial searching range. The features used to calculate the SI
are extracted by the technique based on the phase congruency
model [14], which is invariant to illumination and contrast con-
ditions. The component of MI is used to obtain the local optimal
transformation with sub-pixel accuracy. The joint histogram for
the MI calculation is estimated by partial volume interpolation
(PVI) [20].

With a wide range of the initial possible transformation
parameters, the global maximum of the proposed metric should
be reached when the reference and sensed image are registered.
Thus, registering the two images is equivalent to seeking the
optimal transformation that maximizes the metric. To find the
global optimum of the irregular function of SMI, we first uti-
lized ACOR as a robust global optimizer for image registration.

Inspired by the real ants’ foraging behavior, that the ants
deposit pheromone trail on the ground as carrying food to
communicate with each other indirectly, Dorigo et al. [25]
proposed an ant colony optimization algorithm (ACO). As a
meta-heuristic, the key component of the original ACO is the
pheromone model that allows the artificial ants to cooperate
with each other. As a direct extension of ACO, ACOR [26]
is applied to continuous optimization problem (CnOP) when
a wide initial possible range is available and higher resolution
is required. It uses Gaussian kernel functions as the pheromone
distribution model to sample the search space probabilistically.
While most traditional techniques tend to trap in local maxi-
mum for the non-convex and irregular optimization problems,
ACOR is superior in searching the global maximum. Moreover,
a two-phase searching strategy is designed to improve the
efficiency of ACOR in estimating the optimal transformation.

Phase-1 only considers the SI and finds some low-accurate
solutions. Phase-2 then considers both SI and MI so it is to
search for a more accurate solution. The switch between the two
phases is determined by the diversity of the solutions (div).

This paper is organized as follows. Section II presents the
formulation of the proposed registration method in which the
newly proposed metric SMI is described and ACOR is used to
optimize the registration parameters in a two-phase searching
strategy. In Section III, we evaluate the proposed method by us-
ing multisensor remote-sensing images, including TM, SPOT,
and SAR. Finally, Section IV presents conclusions and future
works.

II. REGISTRATION BASED ON THE INTEGRATED SMI

This automatic registration model is based on the integrated
SMI. First, SI is quantified by the spatial relations of the point
features extracted by the phase congruency operator. Mean-
while, the MI is calculated by estimating the joint probability
between the two images. Second, the new similarity metric SMI
will be constructed by integrating SMI. Finally, ACOR will
be utilized to seek the optimal transformation parameters by
a two-phase searching strategy. Fig. 1 is the flowchart of this
proposed method. The following section presents the details of
the proposed similarity metric and the framework of registration
utilizing ACOR.

A. Integrated SMI as Objective Function

As mentioned in Section I, image-registration methods can
be divided into area-based methods and feature-based methods.
To estimate the correspondence between the reference and
sensed image, both methods use a number of similarity metrics,
such as the area-based methods described in [18]–[20] and the
feature-based methods in [27], [28]. The basic principle of these
methods is to find the optimal transformation parameters that
maximize (or minimize) the similarity metric. This process can
be expressed as

α∗ = arg opt (S (A, Tα(B))) (1)

where A and B are the images to be registered, Tα is the
transformation model, α is the transformation parameters, and
S represents the similarity metric. The choice of similarity
metric is the key to an effective registration model.

Among the similarity measurements mentioned above, the
measurements based on spatial relations of features are more
classical and sophisticated while MI is regarded as a leading
technique in multisensor image registration [1]. However, these
methods have limitations when they are used alone. As is
summarized in Section I, the spatial relation of features (which
will be referred to as SI, in the following text) is difficult
to obtain sub-pixel accuracy in multisensor registration, and
the MI has a limitation in the need of predefined parameter
range. In this paper, we try to overcome these drawbacks by
integrating the SI and the MI. The integration is carried out by
proposing a novel metric—the integrated SMI.
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Fig. 1. Flowchart of the proposed method.

The metric SMI considers both the SI and the MI. It is a
function of SI and MI, which can be defined as

SMI(Tα) = SIA,B ·MIA,B . (2)

In (2), SIA,B represents the SI of the reference image A and
the sensed image B, MIA,B represents the MI. Both of them
are functions with respect to the transformation parameters

SIA,B =SI (A, Tα(B)) (3)
MIA,B =MI (A, Tα(B)) . (4)

Only when both of these two terms are large, then the SMI will
reach its maximum. The following sub-sections provide more
details on the definition and calculation of SI and MI.

1) SI: The SI of SMI is used to efficiently estimate near
global-optimal transformation and correct the bias of MI. In the
proposed method, the modified Hausdorff distance is used to
measure the spatial relations of the extracted features.

The phase congruency model [14] is used to extract sim-
ilar distributed features from multisensor images. Instead of
considering edge as locations with maximal intensity gradient,
the phase congruency model regards edge points as where the
Fourier components are maximally in phase [29], presented
in Fig. 2.

Based on the local-energy model that first introduced by
Morrone et al. [30], location x’s phase congruency could be

measured by

PC(x) =
|E(x)|∑
n An(x)

(5)

where |E(x)| is the magnitude of the vector sum of all
Fourier components, and A1(x), A2(x), . . . , An(x) are the am-
plitudes of the local Fourier components [Fig. 2(c)]. When
most Fourier components are in phase, E(x) and the sum of
A1(x), A2(x), . . . , An(x) will be aligned approximately, and
PC(x)(0 < PC(x) < 1) will be large and close to 1.

Later, Kovesi [14] developed a 1-D measurement of phase
congruency at location x as

PC(x)=

∑
n W (x) �An(x)ΔΦ(x)− t�∑

n An(x) + ε

ΔΦ(x)= cos
(
φn(x)− φ(x)

)
−
∣∣sin (φn(x)− φ(x)

)∣∣ . (6)

In the formulas above, W (x) weights for frequency spread,
An(x) and φn(x) are the amplitude and phase at location (x) at
wavelet scale n, φ(x) is the weighted mean phase, t is the esti-
mated noise influence, and ε is a small constant that prevents the
division being zero. This measurement has the capabilities of
producing a highly localized response and incorporating noise
compensation [29], to address the noise sensitivity problem of
the former local-energy model. These characteristics make it
invariant to image illumination, which also make it suitable for
feature extraction in multisensor image registration. To apply
this 1-D measurement on image, moments of phase congruency
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Fig. 2. Square (a) and triangular (b) waveforms in solid lines constructed by four Fourier series in broken lines. The Fourier components are all in phase at the
center of the step in (a), and at the peaks and trough in (b). Polar diagram (c) presents the Fourier component, complex vector determined by amplitude An(x)
and phase φn(x). For location x, its Fourier components are plotted head to tail, and the vector sum of all components is E(x).

Fig. 3. Hausdorff distance (H) and proposed spatial information (SI) of two similar data sets. With an additional outlier [(a red cross in (b)], H changed from
about 22.84 in (a) to 61.77 in (b) and SI slightly increased from about 0.66 in (a) to 0.67 in (b).

are calculated by PC(x) independently in several orientations,
through the data obtained by Gabor wavelets. The maximum
moment would give the representation of edge features. In this
paper, the classical moment analysis techniques are used to find
the maximum moment.

After the edge significance is calculated by the phase con-
gruency model, points along the extracted edges are utilized to
quantify the similarity of the reference and sensed image by
calculating the modified Hausdorff distance between these two
point sets (i.e., CPA and CPB). The original Hausdorff dis-
tance [31] quantifies the point sets’ resemblance by measuring
the distance of the point in CPA that is farthest from any nearest
point in CPB . This distance has been applied in image registra-
tion [32]–[35] and turned out to be effective. The smaller the
distance, the more resemble the two point sets are. Two simple

examples of Hausdorff distance are shown in Fig. 3. Note that
in Fig. 3(a), a small distance indicates that the two point sets
are similar; whereas in Fig. 3(b), with only one extra outlier,
a large Hausdorff distance exaggerates the mismatch. In order
to minimize the influence of outliers, we used the sum of the
distances as the measurement of resemblance and transform the
sum by Gaussian function. This measurement is defined as SI

SIA,B =
∑

cpA∈CPA

h

(
min

cpB∈CPB

‖cpA − cpB‖
)

(7)

where

h(x) =
1√
2πσ

exp

(
− x2

2σ2

)
. (8)
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Fig. 4. Venn diagram of the relationship between marginal entropy H(A),
joint entropy H(A,B), conditional entropy H(B|A), and mutual information
I(A;B).

In the equations above, CPA and CPB are the sets of extracted
points from the reference and sensed images, respectively.
‖ • ‖ denotes the distance between two CPs cpA, cpB in 2-D
Euclidean space and only the minimal distance of every two
points is concerned, leaving no specified requirement for the
relationship of CPs’ number. h(x) is a standard Gaussian
density function with variance σ2, which is chosen according
to the expectation of distance of corresponding CPs. In Fig. 3,
σ = 30, a pair of points are regarded as CPs with probability
of about 0.68 when their distance is within 30 pixels.

This spatial consistency measure is similar but not identical
to that used in [28]. A small value of Hausdorff distance
between corresponding ground CP sets, excluding the outliers,
suggests that the two images are geometrically aligned. The
Gaussian functions h(x) used SIA,B regards the outliers as
points with extreme distance to others and then rescales it to
a smaller value. In this case, most of the Gaussian functions
are near their maximums, and SIA,B is maximized. The SIA,B

does not only measure the spatial consistency of the extracted
features from the two images but also minimizes the influence
of outliers. SI is less sensitive to outliers because: 1) the
Gaussian function can suppress those outliers’ point pairs that
have large distances, and 2) the summation is large only when
most corresponding point pairs are close to each other. The cor-
responding values of Hausdorff distance and SI of the examples
used in Fig. 3 have been calculated and listed. As can be seen
from (7), SIA,B only considers the distance between nearest
points. Therefore, the computational complexity of SIA,B is
O(nCPs), where nCPs is the number of extracted points.

2) MI: Proposed by Hartley [36], information entropy is a
measure of information contained in a message. Later, Shannon
[37] modified Hartley’s definition by weighting the outcomes
according to the associated occurring probability. To measure
the information redundancy of two random variables, A and B,
the joint entropy will be used

H(A,B) = −
∑
i,j

p(i, j) log p(i, j) (9)

where p(i, j) is the probability of the occurring of the ith value
of random variable A and the jth value of B.

The MI (MI) is defined as the information that two random
variables A and B contain about each other. The form of MI is
defined as

MI(A;B) = H(A) +H(B)−H(A,B). (10)

The relations between joint entropy H(A,B), marginal entropy
H(A) and H(B), conditional entropy H(B|A) and MI I(A;B)
are demonstrated in Fig. 4.

Fig. 5. Gray value of joint histogram of a remote-sensed image with itself. (a)
shows the situation that no transformation is performed. (b), (c), and (d) show
the corresponding histogram when one image is translated with 0.5, 1, and 2
pixels, respectively.

As a measurement of information that two signals contain
about each other, MI is also capable of measuring the informa-
tion between two images. In the following, the random variable
A,B will stand for the referenced image and the sensed image,
respectively.

When MI was first introduced to image registration, it
was assumed that the two images’ corresponding regions are
composed of similar intensity values. Then, this similarity is
postulated by the average variance of the intensity value ratio
of corresponding points [38]. Later, the joint histogram was
proposed, which is a 2-D matrix indicating the amount of
intensity pairs in the reference and sensed image [39]

h=

⎡
⎢⎢⎣

h(0, 0) h(0, 1) · · · h(0, N−1)
h(1, 0) h(1, 1) · · · h(1, N−1)

...
...

. . .
...

h(M−1, 0) h(M−1, 1) · · · h(M−1, N−1)

⎤
⎥⎥⎦. (11)

In the joint histogram, h(a, b) (0 ≤ a ≤ M − 1, 0 ≤ b ≤ N −
1, where M,N are the range of intensity value of the two
images) is the number of pixel pairs with intensity value a
in A and intensity value b in B. The major characteristic of
joint histogram is that its dispersion increases with the mis-
registration of the two images. This characteristic is shown in
Fig. 5. In our study, the joint histogram is estimated by PVI
proposed by Maes et al. [20].

The joint probability distribution is then estimated by (12)

p(a, b) =
h(a, b)

n
(12)

where n is the number of pixels in the overlapped area of the
two images.

In addition to the original definition as (10), normalized MI
(NMI) [40] has been proposed for image registration, which are
less sensitive to the size of overlap area

NMI(A,B) =
H(A) +H(B)

H(A,B)
. (13)

Defined as a measure of information redundancy between
two images, the value of MI is maximal when the two images
are geometrically aligned. The computational complexity of
NMI is O(noverlap), where noverlap is the number of pixels
in the overlapped area.

B. ACO for Continuous Domain (ACOR) as an
Optimization Technique

The SMI as an objective function contains many local op-
timums, which are caused by local good match of extracted
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Fig. 6. Gaussian kernel function Gi (the solid line). Gi is the weighted sum of
k individual Gaussian PDF, denoting as gil (l = 1, 2, . . . , k) (the broken lines,
k = 4 as illustrated).

features and the interpolation artifact inherent from MI. More-
over, an automatic registration method should minimize the
human supervision of selecting ground CPs or providing a pre-
defined initial range of transformation parameters. Therefore,
this proposed optimization algorithm should be able to seek the
global optimum with sufficiently wide initial range.

In our study, ACO for continuous domain (ACOR) [26]
is used as a global optimizer. In implementation, traditional
ACOR faces with difficulties because of involving intensive
computation. A two-phase searching strategy is then proposed
to improve its efficiency.

1) ACOR Meta-Heuristic: In general, ACOR contains
three major algorithmic components: 1) solution construction,
2) pheromone update, and 3) daemon action. Components 1)
and 2) are to search for a solution based on meta-heuristic;
3) is to determine the iterative stopping condition.

Without loss of generality, a model for CnOP can be defined
as: Q = (X,Ω, f). In this model, an n dimensional optimal so-
lution s∗ ∈ X is generated from the search space X ⊆ Rn, with
constraints Ω, in order to maximize an objective function f :
X → R. In this case of image registration, X is the transforma-
tion parameter (rotation, horizontal, and vertical displacement)
and f is the similarity metric, integrated SMI; s∗ represents
the optimal transformation that maximizes SMI, containing n
parameters (n = 3 in the experiment). The followings are the
details of the three algorithmic components, in the search of s∗.

a) Ant-Based solution construction: ACOR has the solu-
tion archive S to keep track of the solution s, satisfying s ∈ X ,
where X = [X1, X2, . . . , Xn]

T is the search space with con-
straints Ω. Every new n-dimensional solution is generated by
sampling Gaussian kernel probability density function (PDF)
Gi(x)(i = 1, 2, . . . , n), respectively. When X1 represents the
horizontal displacement, G1(x) is the corresponding continu-
ous PDF, where the independent variable is the displacement
and the dependent variable its probability density.

With k solutions, define the Gaussian kernel function Gi(i =
1, 2, . . . , n) (Fig. 6) as

Gi(x) =

k∑
l=1

ωlg
i
l(x). (14)

The sampling process of Xi requires the inverse of Gi(x),
which is mathematically difficult to solve. Therefore, selecting
one gil(x) from Gi(x)’s k components is implemented in prac-
tice via an equivalent two-phase sampling.

Fig. 7. Solution archive S used in ACOR, with size k × n. Every solution
si(i = 1, 2, . . . , k) chooses a value for its variable by sampling Gaussian
kernel PDF Gi(i = 1, 2, . . . , n). Each of these PDF Gi is determined by
the previous solutions and the associated weights ωi(i = 1, 2, . . . , k). These
weights are depended on the rank of their corresponding objective functions
f(si)(i = 1, 2, . . . , k).

First, one Gaussian function gil(x) will be chosen probabilis-
tically depending on probability pl(l=1, 2, . . . , k) calculated as

pl =
ωl∑k

r=1 ωr

. (15)

The pl is proportion to the weight ωl(l = 1, 2, . . . , k). While
the weight ωl is proportional to the quality of the corre-
sponding previous objective function f(sl), in other words,
a Gaussian function associated with better solution will have
a greater chance to be chosen. Therefore, as a maximization
problem, the weights should satisfy ω1 ≥ ω2 ≥ . . . ≥ ωl ≥
. . . ≥ ωk when f(s1) ≥ f(s2) ≥ . . . ≥ f(sl) ≥ . . . ≥ f(sk).
In [26], the weights are set by first sorting the solutions
{s1, s2, . . . , sl, . . . , sk} according to their respective objective
function values {f(s1), f(s2), . . . , f(sl), . . . , f(sk)}, and then
the weights are calculated according to

ωl =
1

qk
√
2π

exp

{
− (l − 1)2

2q2k2

}
(16)

where l is the rank of a solution sl and represents its order in
the sorted sequence of all solutions. Above is another Gaussian
function with argument l, mean 1.0, and standard deviation qk.
In (16), q(0 < q < 1) is a parameter balancing the significance
between the iteration-best and the global-best pheromone up-
dating. If q → 0, the best solution found so far will be used with
higher probability in further search. When q is approaching 1,
the search will be more diversified and robustly.

Second, the chosen Gaussian function gil(x) is then deter-
mined by the mean μi

l and variance (σi
l)

2

gil(x) =
1

σi
l

√
2π

exp

{
−
(
x− μi

l

)2(
σi
l

)2
}
. (17)

In (17), μi
l and σi

l can be calculated from the previous
solution archive S [26] (Fig. 7) as

μi
l = sil (18)

σi
l = ξ

k∑
e=1

∣∣sie − sil
∣∣

k − 1
. (19)
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It could be noticed that, each Gaussian function gil(x) is
centralized at the associated solution sl, with a standard de-
viation σi

l derived from the average distance from sl to other
solutions se(e = 1, 2, . . . , k). The parameter ξ is similar to the
evaporation rate of pheromone in original ACO, which adjusts
the balance between exploitation and exploration. Thus, lower
value of ξ will results in higher convergence speed as well as a
greater chance to be stuck in local optima, and vice versa.

b) Pheromone update: The pheromone distribution in
ACOR, also called the heuristic information, is represented as a
series of Gaussian kernel functions, requiring a few parameters
stored in the solution archive S. By the means of changing the
solution archive S, the pheromone distribution is updated.

At the beginning of ACOR, a solution archive S with k
solutions is generated by uniform random sampling. Later at
each iteration, a new solution archive S ′ with m solutions is
produced by m ants. In ACOR, it is assumed that each ant car-
ries one solution. These two archives are then united, obtaining
ΔS = Rank(S ∪ S

′). In other words, k +m solutions stored in
S and S

′ will be united and ranked. Before the next iteration, m
worst solutions in ΔS will be removed to ensure that only the
best k solutions could be kept and then effectively guide the
coming search process. In this paper, the m worst solutions are
regarded as those have smaller value of registration index, SMI,
than other k solutions.

c) Daemon actions: After updating the solution archive S,
the best solution found so far is returned. Meanwhile, the ter-
mination conditions will be examined. These conditions include
the number of iterations, improvement of the objective function,
or difference between the best and worst solutions. In this
case, when the desired condition, iterations tmax, is met, the
optimization process will terminate.

2) Two-Phase Searching Strategy: In this paper, ACOR is
used to seek the optimal transformation parameters for trans-
lations and rotation so that multisensor remote-sensing images
can be registered. The transformation can be expressed as

T =

⎛
⎝ cos θ − sin θ dx

sin θ cos θ dy
0 0 1

⎞
⎠ (20)

where θ is the rotation angle, dx and dy are the horizontal and
vertical displacement, respectively. The sensed image B can
be registered to the reference image A through the associated
transformation T , which is usually denoted as T (B). The
search for registration parameters is a CnOP, whose objective
function is

SMI(T ) = SI (A, T (B)) ·MI (A, T (B)) . (21)

As mentioned in Section II, the computational complexity of
SI is O(nCPs), while that of MI is O(noverlap). Suppose the
number of iterations is tmax, and k solutions are constructed
at each iteration, then the total execution time of the proposed
method should be O(tmax · k · (nCPs + noverlap)).

The amount of extracted features should be much less than
the amount of the original pixels, thus during the calculation
of SMI, we will have O(nCPs) � O(noverlap). Based on the
great difference of efficiency, a two-phase searching strategy
is proposed to accelerate the optimization process. In this

strategy, the process is divided into two phases, phase-1 and
phase-2. Only SI is considered in SMI at phase-1, while both
metrics are considered at phase-2. These two phases share the
same solution archive S, and thus share the same distribution
of pheromone. At phase-1, several low-accurate solutions are
found, and the pheromone is redistributed around these solu-
tions. Then, at phase-2, this heuristic information is inherent,
and ACOR will continue to search more accurate solutions.

The switch between these two phases is determined by the
diversity of the solutions stored at S. It is found that, when the
ACOR converges, several near-optimal solutions are found and
the diversity of S will decrease [41]. Therefore, the diversity
is a suitable measure of convergence and also a reasonable
determinant of phase switching. We adopted the measure of
diversity used in [41], [42]

div(S) =
1

Ndiag · k

k∑
l=1

√√√√ D∑
i=1

(
xi
l − xi

)2

(22)

where Ndiag is the length of the diagonal of the search space,
k is the number of solutions in S, xi

l is the component at
dimension i of the l th solution at S, and xi is the average of all

the solutions in dimension i. Note that the
√∑D

i=1(x
i
l − xi)2 is

simply the Euclidian distance to an average solution x, and thus

the (1/k)
∑k

l=1

√∑D
i=1(x

i
l − xi)2 gives the average distance

to that solution. After dividing the average distance by the
diagonal of the search space Ndiag, div(S) now represents the
diversity of solutions in proportion to the parameter ranges.
For instance, if dib(S) = 0.05 and the searching range of
displacement is [−500, 500], then the diversity of solutions is
approximately 50. As is suggested in [41], [42], the value of
div(S) should be set in the range [0.0, 0.5]. The higher value of
div, the more diverse is the set of solutions.

Based on this measurement of diversity, the SMI can be
modified as a piecewise function

SMI(T )

=

{
SI (A, T (B)) , div ≥ divmin

SI (A, T (B)) ·MI (A, T (B)) , div < divmin
. (23)

When a certain threshold divmin is reached, it means the
solutions found by the proposed algorithm have converged to
a region of the searching space. These solutions are near global
optimal. From then on, SMI considers both SMI to seek more
accurate solutions. As can be seen from the definition of spatial
and NMI as (7) and (13), the value of MI(A, T (B)) is in the
range [1.0, 2.0], while the value of SI(A, T (B)) is positive.
Thus, each solution constructed in phase-2 has a higher objec-
tive function value than those constructed in phase-1. Accord-
ing to the pheromone update rule, the more accurate solutions
will tend to replace the less accurate solutions. This process will
continue to converge rather than diverse again. This allows the
generation of more accurate transformation at phase-2.

In practice, a rather small value of divmin is recommended
(divmin = 0.05 in the experiment). For images with hundreds
by hundreds pixels, divmin = 0.05 indicates that the switch will
take place after the diversity of the solutions is less than dozens
of pixels. In other word, the algorithm is likely to continue
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converging in phase-2, as long as the solutions constructed
in phase-1 lie several dozen pixels away from the optimal
transformation. Such divmin emphasizes the primary search
by SI to ensure high efficiency and satisfies the registration
accuracy requirement by MI.

III. IMPLEMENTATION AND RESULTS

This proposed method was examined by registering various
types of remote-sensing images from multisensors. They in-
clude optical data from Landsat TM, SPOT, and microwave
imagery of Radarsat SAR which cover the same study area of
Guangzhou, the largest city in south China. Landsat TM and
SPOT are passive radiometers which can acquire images only
in a cloud-free daylight condition. SAR is a side-looking active
synthetic aperture radar instrument, and it is able to obtain data
during day or night and even through clouds. Taking advantage
of these different types of imagery helps to delineate flooding
[43] and mapping forestry [44]. In our experiment, all the im-
ages are resampled to the same resolution of the finer one so that
registration can be carried out and the proposed metric SMI can
be assessed. However, these images could be down-sample to
coarse resolution in order to accelerate the registration process.
The registration transform is considered as that composed of a
2-D translation (tx, ty) and a plane rotation θ.

In Section III-A, two pre-registered images acquired by TM
and SPOT are used to validate the effectiveness of the pro-
posed metric. This section also includes the comparison of the
performances of the three different similarity metrics (SI, MI,
and SMI) mentioned above. Then, in Section III-B, a complete
automatic registration of two images taken by TM and SAR,
respectively, is carried out to validate the effectiveness of the
proposed method using SMI and ACOR.

The proposed algorithm was implemented in Matlab. All the
experiments were run on a PC with Intel(R) Core(TM)2 2.33 Gz
CPU, and 2 Gb RAM; OS Linux version 2.6.38-8-generic
(Ubuntu 11.04).

A. Effectiveness of the Integrated SMI

We validate the performance of SI, MI, and SMI and then
demonstrate the effectiveness of SMI as well as the drawbacks
of SI and MI. Two images are pre-registered and then simulate
a horizontal and a vertical translation. The value of the three
different similarity metrics under different translation will be
calculated and shown. These simulations will demonstrate the
possible searching range and respective accuracy of the regis-
tration based on different metrics. The remote-sensing images
used to demonstrate the effectiveness of the proposed metric
are shown in Fig. 8(a) and (b). Although these two images
have similar spectral respond, they are taken at different times,
by different platforms, and with different spatial resolutions.
Before conducting the experiments, the TM image is manually
pre-registered and resampled to the same resolution as the
SPOT image. The size of the registered image is 743 × 950
pixels; the resolution of the TM image is 30 m, and the SPOT
is 10 m. To be clarified, in the following experiments, unit
of translation is based on the pixels of the finer resolution.

Fig. 8. Images used to demonstrate the effectiveness of the newly proposed
metric SMI, which have been manually pre-registered. (a) Sensed image:
Landsat TM Band 5, acquired in 2007. (b) Reference image: SPOT Band 4,
acquired in 2006. And the CPs extracted by phase congruency model. (c) CPs
extracted from sensed image. (d) CPs extracted from reference image.

Although only two images are used, these experiments can be
duplicated on any other data set.

A horizontal translation is implemented to demonstrate the
estimation bias of SI. To quantify the SI, point features should
be extracted by phase congruency model first. The parameters
used by phase congruency are listed in the Table I, while the
extracted points are shown in Fig. 8(c) and (d). The points as
mentioned in Section III-A, the spatial distance of the two sets
of point features is used to calculate SI by (7). As is shown in
Fig. 9, although the optimal transformation is corresponding
to global maximum, it cannot archive sub-pixel accuracy.
When checked in detail, the maximal value of SI may not
always correspond to the best transform parameters. This issue
might be caused by the outliers and feature mismatching. It
is common since most of the feature extraction and feature
matching methods are not always stable in the registration of
multisensor images.

The same translation experiment as that of SI is conducted
by using MI. As shown in Fig. 10, the peak of MI is at the point
where the reference image and the sensed image are geometri-
cally aligned. Although the correct transformation (without dis-
placement) corresponds to the maximum value of MI, it is at a
local maximum within the range between −500 and 500 rather
than the global maximum when the size of the image is 743 ×
950 pixels. Affected by the estimation bias of joint probability,
the value of MI becomes unreliable as the area of overlapping
region decreases. When the NMI is used, our experiments show
that the value of the MI will still increase when the overlapped
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TABLE I
PARAMETERS USED BY PHASE CONGRUENCY MODEL

Fig. 9. Spatial information between reference and sensed image in Fig. 8. The sensed image has been translated vertically; this diagram shows the value of SI
with respect to x-displacement. (a), (b), and (c) are the SI value when x-displacement is between [−6, 6], [−60, 60], and [−600, 600], respectively.

Fig. 10. Mutual information between reference and sensed image shown in Fig. 8. The sensed image has been translated vertically; this diagram shows the value
of MI with respect to x-displacement. (a), (b), and (c) are the MI value when x-displacement is between [−6, 6], [−60, 60], and [−600, 600], respectively. Among
them, (b) and (c) are sampled by integer translations.

area of two images decreases. When a wide initial range of
parameters is given, the algorithms only utilizing MI may fail to
find the desired local maximum and produce fault registration
results. As can be seen from Fig. 10(c), in this case, only if the
initial range is between [−200 and 200], successful registration
can be guaranteed. Therefore, it is difficult for this model to
perform correct registration without any human supervision of
giving predefined parameter range.

Another experiment is carried out by utilizing the proposed
metric, SMI. The procedures of calculating MI and SI are
exactly the same as before, and the SMI is calculated according
to (21). Fig. 10(b) and (c) shows that the global maximum of
this metric is corresponding to the best transform parameters.
Moreover, as shown in Fig. 11(a), SMI also has the capability
of archiving sup-pixel accuracy. It must be noticed that, SMI
inherit sthe advantages of both MI and SI. These advantages
of SMI show its potential of constructing a highly robust
and accurate automatic registration model. Meanwhile, as
can be seen from Fig. 11(a), when non-integer translation is
performed, plenty of local maxima also state the difficulty of
optimization. This difficulty emphasizes the need to introduce
ACOR as a global optimizer.

A further comparison of these three different similarity met-
rics under 2-D translation is demonstrated in Fig. 12. The
features of these metrics are maintained under 2-D translation.

Fig. 11. SMI between reference and sensed image in Fig. 8. The sensed
image has been translated vertically; this diagram shows the value of SMI with
respect to x-displacement. (a) and (b) are the SMI value when x-displacement is
between [−6, 6] and [−600, 600], respectively, where (b) is sampled by integer
translations. By seeking the global optimal of this similarity metric, images can
be registered with high accuracy and wide initial range of transform parameters.

We can see from Fig. 12(a)–(c) that, SMI shares the global-
optimal feature that of SI. Moreover, from Fig. 12(d)–(f), SMI
also inherits the high accuracy of MI. SMI is able to overcome
their respective drawbacks that SI is difficult to obtain sub-pixel
accuracy and MI is in need of predefined parameter range.

In Figs. 10(a), 11(a), 12(d) and (f), the multiple peaks of
the MI curves and surfaces are contributed to the interpola-
tion artifacts of MI, which have been discussed in [24], [45].
Avoiding the influence of these artifacts to the greatest extent,
the proposed method, with ACOR and the two phase searching
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Fig. 12. Surface of three different registration functions under two-dimensional translation. (a)–(c) are the surfaces of MI, SI, and SMI while both x and
y displacements are between −600 and 600 pixels. The optimal transformation is the global maximum of both SI and SMI and the local maximum of MI.
(d)–(f) are the surfaces of MI, SI, and SMI while both x and y displacements are between −6 and 6 pixels. In this region, the maximum of both MI and SMI is at
(0,0), while the maximum of SI is at (1.3, −2.4).

Fig. 13. Images used to validate the effectiveness of the proposed method, and
the CPs extracted by phase congruency model. (a) Reference image: Landsat
TM Band 4, acquired in 2007. (b) Sensed image: SAR image (HV), acquired in
2008. (c) CPs extracted from reference image. (d) CPs extracted from sensed
image.

strategy, seeks the global-optimal transformation. Moreover,
the metric SMI is flexible to calculate the MI by higher order
generalized partial volume estimation (GPVE) algorithm [46]
to further overcome the artifacts problem. The PVI used in this
study is regarded as the first-order GPVE algorithm and showed
perfect registration consistency and highest efficiency [24].
Although the existence of interpolation artifacts might reduce
the registration accuracy, the proposed index, SMI, is flexible
to use the second or third GPVE algorithm to quantify MI.

B. Validation of the Proposed Registration Model

To test the reliability and validity of the proposed registration
model, an automatic registration without any human supervi-

TABLE II
PARAMETERS USED BY ACOR

Fig. 14. (a) The registration result. In this RGB color image, the green com-
ponent is the reference image, and the red component is the registered image.
(b), (c), and (d) are the local enlargement areas of the registered image.

sion is performed between two sets of remote-sensing images,
a Landsat image (TM4) image (size: 762 × 397; resolution:
30 m) and a SAR image (HV) (size: 696 × 344; resolution:
12.5 m) [Fig. 13(a) and (b)]. These images are acquired by
sensors that with different imaging mechanism. As is conducted
in Section III-A, these images have been resampled to the same
resolution before performing the registration.
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Fig. 15. (a) and (b) are the transform parameters during each iteration, including x-displacement, y-displacement, and rotation. (c) is the value of SMI during
each iteration. These values correspond to the best transformation found at each iteration. The switchover presented in the figures indicates that the phase 2 search
began at the 47th iteration.

In our experiments, the parameters used for phase con-
gruency model and ACOR optimization are summarized in
Tables I and II. The initial range of rotation is θ∈ [−180◦, 180◦],
and the range of translation is the size of images, i.e., dx ∈
[−696, 1458], dy ∈ [−397, 741]. Any transformation that is out
of this range cannot overlay these two images, which is impos-
sible for image registration. In other words, all possible rota-
tions and translations are included in the search space. Thus, no
human supervision is needed for determination of the parameter
range. Moreover, the divmin is set to 0.05, which means the
switch of phases will take place when the diversity of solutions
in x-displacements, y-displacement, and rotation are approxi-
mately 100, 50, and 18, respectively. Given the evaluation in
Section III-A, SI is able to find solutions several pixels away
from the optimal translation. Therefore, the divmin set here is
sufficient for the proposed algorithm to converge in phase-2.

Fig. 14(a) shows the result that a Landsat image (TM4)
is automatically registered to a SAR image (HV) using this
proposed method. This experiment took 6 min, 5.7 s, and
150 iterations. The convergence process is shown in Fig. 15.
For better visualization, in Fig. 14, the registration result is
shown as an RGB color image, whose green component is
the reference image and red component is the sensed image.
Although the sensed image is with heavier noise distortion
and complete different imaging mechanism compared to the
reference image, the proposed method is able to perform an au-
tomatic registration without predefined parameter range. Three
enlarged parts of the registered image [Fig. 14(a)] are shown in
Fig. 14(b)–(d). From these areas, we can find that all the roads
[such as A and B in Fig. 14(b)] and most of the river shore [such
as D in Fig. 14(c) and E in Fig. 14(d)] are matched. Since these
images are acquired at different times, part of the river shore
[such as C in Fig. 14(b) and F in Fig. 14(d)] are not completely
overlaid. Nevertheless, these local feature differentiations will
not influence the global registration, which also indicates the
robustness of the proposed method.

IV. CONCLUSION AND FUTURE WORKS

Image registration is a fundamental process of geometrically
aligning two images, which are usually acquired from different
sensors or at different times. Various applications require high
accuracy of multisensor registration results. Traditional tech-
niques have limitations of image registration. These existing
techniques can be divided into two categories, the area-based

methods and the feature-based methods. The heavy compu-
tational load limits the use of area-based methods, while the
accuracy of feature-based methods is usually influenced by
different spectral sensitivity. Thus, we tried to integrate them
to overcome their drawbacks.

This work represents the first attempt to use the SI of ex-
tracted point features in conjunction with MI of intensities to
register remote-sensing images. These two kinds of information
are integrated by proposing a novel similarity metric—SMI.
The global maximum of SMI corresponds to a transforma-
tion with sub-pixel accuracy. To optimize the SMI metric,
we applied the ant colony algorithm on continuous domain
(ACOR) into the transformation parameters estimation for
the first time. Moreover, we designed a two-phase searching
strategy to improve the optimization efficiency after analyzing
the computational complexity of SMI. Combining the SMI
metric, ACOR, and the two-phase searching strategy together
formulated an automatic registration approach for multisensor
remote-sensing images. This approach can effectively reduce
human labor and thus improves the efficiency of remote-sensing
image processing.

To validate our registration approach, we applied it to the
registration of remote-sensing images derived from Landsat
TM, SPOT, and SAR. The experimental results indicate that this
registration approach can achieve sub-pixel accuracy without
predefining the parameter range with a relative satisfactory
speed. It took about 6 min to complete the registration process
with the size 397 × 762 of the reference image. This proposed
method works well with all possible translations, when the
MI-based registration model [47] in which the offsets must
be within 24 pixels and [48] that require 10 pixels and 10◦

offsets. Moreover, unlike the feature-based method—ARRSI
system [8]—that require the rotations between [−30◦, 30◦], our
method can handle the optimal transformation with rotations
between [−180◦, 180◦]. These features substantially reduce hu-
man supervision of selecting ground CPs and greatly improve
its robustness in multisensor image registration.

Our automatic registration approach still has some opera-
tional limitations. We simplify the image distortion as a 2-D
translation and a plane rotation, which may be inconsistent with
reality. During the registration process, some parameters are
determined by references or repeated experiments. The future
study will concentrate on determining the parameters’ range
of the proposed method automatically, and more attention will
be paid on utilizing more advanced SI of extracted features
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and new presentation of MI of the two images. The higher
order GPVE to MI computation would be carefully considered
to balance registration accuracy and efficiency. Moreover, the
local distortion of the image should be taken into consideration.
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